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Abstract

We address the problem of reconstructing a class of sampled signals which is a member of shift-invasant space
In the traditional method, the reconstruction was obtained by first processing the samples by@diggitab

filter, then forming linear combinations of generated functions shifted with p&ritd order to eliminatehe

digital correction filter, we propose a computational approach to the reconstruction funhgarec®nstructic

was directly acquired by forming linear combinations of a set of reconstruction funcieaskey idea is

obtain a matrix equation by means of oblique frame theory. The reconstriuctations are obtained by solvi

the matrix equation. Finally, the computational approach is applied, respectively, to reconstructiontiziea digi
which samples the signal by derivative sampling or periodically non-uniform sampling techrhegsesult

show that the method is effective
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1. Introduction

A signal class that plays an important role in sampling theory is signals in shift-invariant
(SI) spaces [1, 2]. Such functions can be expressed as linear combinations of shifts of a set of
generators with period@ [3, 4, 5]. This model encompasses many signals used in measure,
instrument, communication and signal processing. For example, the set of bandlimited
functions is Sl with a single generator. Other examples include splines [6, 7] and pulse
amplitude modulation in communications. Using multiple generators, a larger set of signals
can be described, such as multiband functions [8, 9, 10]. Sampling theories similar to the
Shannon theorem can be developed for this signal class, which allows to sample and
reconstruct such functions using a broad variety of filters.

Recently, in order to improve the sampling speed, Papoulis’ theory is usually applied to
oscilloscope and digitizer. We have extended the scope of Papoulis’ theory by introducing a
formal distinction between the input space and the reconstruction space. The sampling can
then be represented as the inner products of the input signal with a set of sampling vectors,
which span the sampling spac& Examples include multi-resolution [11] spline
decompositions [7]. And the reconstruction is obtained by forming linear combinations of a
set of reconstruction vectors that span a spélcdhe reconstruction was obtained by first
processing the samples by a digital correction filter [12, 13], then forming linear combinations
of a set of reconstruction vectors that span a spécén order to eliminate the digital
correction filter, we study the sampling reconstruction in such a case that the samples come
from a known shift-invariant space, and present a computing method of the reconstruction
function from the oblique frame theory. The reconstruction was directly acquired by forming
linear combinations of a set of reconstruction functions. Finally, the computational approach
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is proved by reconstruction of a digitizer which samples the signal by derivative sampling or
periodically non-uniform sampling

The paper is organized as follows. Sampling in shift-invariant spaces that we treat in the
paper is introduced in Section 2. Section 3 presents the oblique frame theory. In Section 4 we
propose a new computational approach to the reconstruction function using the oblique frame
theory. Experiment results are demonstrated in Section 5.

2. Sampling for a shift-invariant spaces

In this paper, we consider more general shift-invariant spaces, generateflifigtions
{#®)} 5y .- A finitely-generated shift-invariant subspacelir( fz(:,[n]2 <+w) is defined

i=0n0Z

as:

i=0 n0Z

w{x(t)szq[M(t— nT:{ ¢ O 4}.

The functiong ¢, (t)} are referred to as the generators/fin the Fourier domain,

i=01L L-1

we can represent an{txeW as:
L-1

X(@) =2 C(o)¥(w), )

where: C (w) =c[Kle'™.

Our only restriction on the choice of the generating function seqlﬁét(clé
W is a closed subspace 6f with {#®)}, o, |,
must exist two constansand B(0 < A< B <), such that:

is that

i=01L L-1

as its Riesz basis. In other words, there

SN

i=0n0z

SIS gt T

i=0n0z
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i=0 n0Z

Sincex(t) lies in a space generated byfunctions, it makes sense to sample it with m
filters {5 (’t)}izo,1L .1, @s itis on the left-hand side of Fig. 1. The samples are given by:

dlr=(s(t-nT, k)= [ & & ny @t dt 2
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Fig. 1. Sampling and reconstruction in shift-invariant spaces.
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At the same time, the choice of the collect{er(t- nT)}

In other words, there must exist two constafitandB (0< A< B <) for every x(t) OW,
such hat:

w011 L1z forms a frame folV.

AP <3 3|05t im)f < 8 X

i=0 n0Z

If 0<A=B<oo, the frame is said to be an exact frame. An exact frame is a Riesz basis.
We define the sampling space:

S={L§qua 0T 6 T 2!}.

i=0 n0Z
Taking the Fourier transform af (n) in Fig. 1, we have:

400 L1

D@ =" Glewr2mpy (wr 2m)$(r 210

== ©)
=S ER U B am) o i

where: C, (w) and D, (w) are the discrete-time Fourier transforma{n) andd, (n) ¢, (w)
and §(w) are the Fourier transform o, (t) and §(-1) , respectively.

This leads to a compact relation between the sampling data:
d(m=(d(n d(n L d,(n) and coefficients(n =(¢(N ¢(N L ¢, (n)
of via a matrix-vector multiplication in the Fourier domain:

H(0)C(w) = D(w), (4)
where:

ho,o(w) hO,l w) L hO,Lfl @ )

h o (w) h,w) L e, ®)
M M (@) M

h.-10(@) ho,@) L hy @)

h,(w) = i S(w+2mny, (w+ 2 n);

n=-co

- H(w)=

D(@)=(Dy(@) D@ L D)
C@=(Cw Cw) L GC,o)

As illustrated in Fig. 1, the reconstruction was obtained by first processing the samples by
a digital correction filterH (w)™, then forming linear combinations of generated functions

{#.®}, ., ,_,shifted with periodT. In order to eliminate the digital correction filter we
propose that the reconstruction is directly acquired by forming linear combinations of a set of
reconstruction functionégi (t—nT) The sampling system is schematically
repregnted in Fig. 2.

}iZO,lL L-1p0z *
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Fig. 2. Improved sampling and reconstruction in shift-invariant spaces.
3. Obliqueframetheory

Let us now simply introduce the oblique frame theory. A function sequence
{s(t- n'D}i:Q1L -1z IS called an oblique frame of subspatef there are two constants

andB (0< A< B<®) such that;
AN < 33|05 (=) < B X

holds for anyx(t) W . An exact frame is a Riesz basis. Obviously, a Riesz basis is also a
frame. For any oblique framés (t- nT)}

dual frame{¥{(t- nT)}

izo1 -1z Of W, there exists a so-called oblique

204l L-1n0z such that:

X(0) =3 S(XD, 5(t- nT)%( & nJ (5)

i=0 n0zZ

holds for anw(t) OW . Note the definition of an oblique frame operator is:

TO) = (X0, 5(t- ) & ©

i=0 nCZ

It is easy to see that the function seque{if:é(s(t— nT))} is an oblique dual

i=0,1L L-1p0zZ

frame of the oblique framgs (t- nT)}

i=0,1L L-1p0z *

The scalar sequencéx(t),s(t-nT)) is called a moment sequence of the

i=0,1L L-1p0Z
L-1

function x(t) JW to the frame{s (t—=nT)} ., , ., . Let ()= > cInis(t- .

i=0 Mz

If the scalar sequende; (n)} is a moment sequence of a function to the frame

i=0,1L L-1p0Z

{s(t=nM} . 10z » then it must bec () =(T*(f(9), s(t- nT)). This follows from the
factthat ¢ (n) = (X1, s(t= nT), for some functionx(t) W and:

L-1

THHO) =2 2 (X0, $(t- nD) %W & nT= &) ()
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4. Derivation of thereconstruction function

The choice of the generating function seque{n&eﬁt)} is that W is a closed

subgpace ofl? with as its Riesz basis if and only if [14]:

i=0,1L L-1

0< 4016, @I ) < A J, @ ) <

where: G, (w) = Z W(w+ 27K)W (w+ 27k)" , W(w) is the Fourier transform of:

kOz
s =(40 4,0 L ¢.,0) .
Define ¢t) in W by:
(@) =G, (W)W(w), ®)

where ®(w) is the Fourier transform of(t) .
In order to obtain the reconstruction function, defipénT, t) as in (1):

Q(nT,H =3 (509 (NT- mPp( + My, ©)

Then, the function sequende; (nT, B}, is continuous inW. For ary function

i=0,1L L-1p0z

L-1
x(t) OW, there is a scalar sequen@(n)}, .., , .., such thatx(®) = > g[Ag(t-n.

i=0 nOZ

Following the Parseval identity, we derive:
(x(1), q(nT, D)

1
—E<X(w),Q(nT,w)>

=%T<C(w)T‘P(w),W(w)TZ(S. Cg)(nT- m1) é“">

=2i<C(w)Tw(w)w(w)H ,Z(s Og)(nT- m7) é““> (10)

—f”C(w > W(w+2nK)W (w+ 27k ) G (w)Z($D¢ nT- m & a

=2 (80X € (Wg(t= KM)(T -mT)
=d (n).

From (10), it implies that{gq(nT, 9} .. , ..,
i=0,1L L-1n0Z  take the oblique dual functiog (t—nT) = T'(s(t= nT),whereT is
the obique frame operator of the franfg (t=nT)} ., _,.,-So{g (N, O}, ., | .., isan
oblique duaframe of{s (t- nT)}. in W, such that:

is a frame of W. For ay

i=0,1L L-1p0Z

L-1

2.2 (x(),s(t-nT) g(t- n= K}

i=0 n0z

So the framd g, (nT, t)}i=0,1L L1z Of the spacéV is called a reconstruction frame. In a
real-world application, we need to know the expression of the reconstruction
frame{ g, (nT, v} As q(t-nT)=T*(g(t- nT), we have:

i=01L L-1p0Z *
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QT 9=3 5 (q(nT %, G(mT ) o+ mY (11)
Substituting (9) into the Fourier transform@fnT, t), Q (w,t) can be rewritten as:
Qwt)= ;q (nT, e
=2.2.(s 09" (nT- mg( + mJ &~

niz miz

=YY S(w+2mn®" (w+ 2T (t= mT) & 12)
= ZZ S(w+2mn)®T (w+ 2rnN¥ (w+ 2T m) gt
Let:
G(@e™ =3 g(t-nme. (13)

Subgituting (13) into the Fourier transform OZZ (nT, 1), q(mT, ) g(t mJ,it can be

k=0 nOZ

rewrtten as:

_ZZ; [-36 00 (0= M= MY (30 (mT- g~ pF g + mTe

k=0 z

MrN

fZZS(w+2nn)¢'T(a)+ 2 @~ 1T (s0p) (MmF pW(@- pY dt mré rd

z 0z mz Pz

3 [T XS (@ 2mn® (@t 2 (@4 273 5, 9 (MT- PR PG+ m € w0
0z mz 14

> S(w+2mn@" (w+ 27’ (w+ ZHI)Z (s0p) (MT- pW @+ 27 ) g(+ m) &

0z wmz

Z > S(@+2m)@" (w+ 2V (w+ 271y $ @+ 27mp)®" (w+ 277p)) W (w+ 27t )g, ¢ ~mT)e™™"

Iz niz

1 I I
I M T T
CIDME IME IV 2
EM M
8

S(w+2mn)®T (w+ 2TV (w+ 271y (S @+ 27 POT @+ 21 p)‘ Y+ 2B, e .

3

z 0.

N

mz

Let:

A (wt)= ZZquwmd@umw@HmQX%mz”p@ﬁm@w@+m¢W

miZ Iz niz

Then we have:

Qlwt) = Aw, )G(w), (15)
wher:
Aswt) A wt) L AL et)
nwp=| B@Y AED L ALe))

M M (0] M
A @) A,@bD L A, 0t

- 6W=(GwW GW L G,w@) ;
- QwH=(Qwl QWi L Q,&t)

From (15), the reconstruction franf&«) is derived by:

G(w) = AY(w, ) Qw, 1). (16)
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From (13),the generated functiods, (1)} follow that:

0.0=5-]" 3 a(t-1Medo
1 o7 " ) (17)
=5Tj_”<3k wWE“ dw k= 0,3 |- :

5. Experiment and analysis

We now apply the computational approach to reconstruction from samples of a digitizer.
The digtizer is schematically represented in Fig. 3. In the digitizer, two sampling methods are
selected, one is derivative sampling and the other is periodically non-uniform sampling. So
we utilize the computational approach of the reconstruction function for sampling in shift-
invariant spaces to derivative sampling and periodically non-uniform sampling. In section V-
A, we consider the derivative sampling, and in section V-B we provide the periodically non-
uniform sampling.

| |
| |
| |
| |
|
} Derivative }
} sampling dnl }
} or —————\| Reconstruc | |
i Periodically -tion !
| -
; non-uniform !
} sampling ;
| |
| |
| |
| |
| |
| |
| |
|

Digitizer
Fig. 3. The structure of a digitizer
5.1. Derivative sampling

We consider the cade=2. Thecorresponding analysis filters in the block diagram in the
Fig. 1 are s(-t)=d(9) and s(-t)=J'(1). The generating functiong,(t) and ¢,(t) of
reconstruction space W are given by:

4,(t) :sincér)expe j Zhgt ) (18)

.0 =sinc ) exp( mgt ) (19)

where: T is the sampling period.
We @asily derive the reconstruction functions by using the oblique frame theory. The

reconstruction functiong,(t) and g,(t) are expressed by:

—4sin(%cq)t)+ 25in€cq,t r Zsingcq)t ) cosgcq,t 3 cosi(cqjt -) ZC%&@J

9o(t) = o e
cosé%t )+ cosga{,t ¥ Zcos](a{,t )
a,()=- = 5 — where: e =277/T.
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We sample a continuous-time signalt) =sin(45x 16t + sin(128 1@ )usng the

derivaive sampling system witd = 277/10 . Obviously, x(t) OW. The reconstruction signal

is shown in Fig. 4. In Fig. 4, the sampling points in the first channel and second channel are
marked by 11" and “.”. Fig. 4a shows the first channel reconstruction signal. The second
channel reconstruction signal is described in Fig. 4b. The linear combination of two channel
reconstruction signals is shown in Fig. 4c. The reconstruction algorithm is proven by
comparing Fig. 4c and Fig. 4d, it is shotiat the reconstruction algorithm is effective.

2
1
Am A
plit mp
ud O litu
e(v de(
) 1 v)
2l . . - . .
75.5 76 76.5 75.5 76 76.5
time(us) time(us)
a. First channal signal b. second channal
signal
2
1
Am A
plit mp
ud liu O
e(v de(
) V) -1
L L L 2 L L L
75.5 76 76.5 75.5 76 76.5
time(us) time(us)
c. reconstruction signal d. original signal

Fig. 4. Reconstruction signal from differential sampling.
5.2. Periodically non-uniform sampling

In this very structured form of periodically non-uniform sampling, the samples are
acauired at two distinct locatiorst, =0, At, =T /3 within the basic sampling pericd The

corresponding analysis filters ag(—t) = o(t) ands (—t) = o(t—At). The generating functions
@,(t) and ¢,(t) of reconstruction spad4 are given by (18) and (19).
From (16), the reconstruction functiog(t) and g,(t) are expressed by:

sm( “ t-At))
——exp(] *%t ) -1 exp(- J*% t - At))
“ 2 t- )

sm(w t)

9o(t) =

v sm(w"(t At))
+ e -3 ———exp(-jw, ¢ - At)),
% - at)
3
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sin(bt) sin(bt)

# exp(ll t)+#
I T R TR

6 3

g,(t) =

exp(iat)

sin(% t+At)) sin(% t+At))

1
(1-e")

1
(1-el2@™)

exp-i5 e E+A)) expia € +At))

@ @
— (t+At — (t+At
6(+ ) 3(+ )

wherew, =277/T .

Assuning an input signak(t) = 2sin(57x 10t /6)cosgx 1@ /Zand the sampling period
T =1/10 ,obviously x(t) OW. Fig. 5 shows the reconstruction signal; the sampling points in
the first channel and second channel are marked dfyahd “.”, the dotted lines are the
imaginary of reconstruction signals. By comparing Fig. 5c and Fig. 5d, the validity of the
reconstruction algorithm will be proven too.

2 2
° °
o L
A 1 * ok A 1
mp mp
itu O 5 A 4 i O
de( de(
v) -1 + & ok v) -1
°
° °
-2 : : -2 : :
2 2.05 2.1 2 2.05 2.1
time(us) time(us)
a. First channal signal b.. segond channal
2
A A 1
mp mp
litu litu O
de( de(
v) V) 1
L -2 L )
2.05 2 2.05 2.1
time(us) time(us)
c. reconstruction signal d. original signal
Fig. 5. Reconstruction signal from periodically non-uniform sampling.
6. Conclusion

In this paper, we studied the problem of recovering a sig(talin shift-invariant spaces,
from L given sets of samples which are modeled as inner productf)ofvith sampling

functions s (-t), 0<i <L —1. In the traditional method, the reconstruction was obtained by
first processing the samples by a digital correction filter, then forming linear combinations of
generated functions shifted with periddin order to eliminate the digital correction filter, we
derive a computational approach to the reconstruction function, which turns computing of
reconstruction functions into solving a matrix equation by means of the oblique frame theory.
It is ensured that the reconstruction functions can be effectively obtained. Thus the
reconstruction was directly acquired by forming linear combinations of a set of reconstruction
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functions. Finally, the method is verified through reconstruction of periodically hon-uniform
sanpled or derivative sampled signals of a digitizer.
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