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Abstract 

We address the problem of reconstructing a class of sampled signals which is a member of shift-invariant spaces. 
In the traditional method, the reconstruction was obtained by first processing the samples by a digital correction
filter, then forming linear combinations of generated functions shifted with period T. In order to eliminate the 
digital correction filter, we propose a computational approach to the reconstruction function. The reconstruction 
was directly acquired by forming linear combinations of a set of reconstruction functions. The key idea is to 
obtain a matrix equation by means of oblique frame theory. The reconstruction functions are obtained by solving 
the matrix equation. Finally, the computational approach is applied, respectively, to reconstruction of a digitizer
which samples the signal by derivative sampling or periodically non-uniform sampling technology. The results 
show that the method is effective. 
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1. Introduction 
 

A signal class that plays an important role in sampling theory is signals in shift-invariant 
(SI) spaces [1, 2]. Such functions can be expressed as linear combinations of shifts of a set of 
generators with period T [3, 4, 5]. This model encompasses many signals used in measure, 
instrument, communication and signal processing. For example, the set of bandlimited 
functions is SI with a single generator. Other examples include splines [6, 7] and pulse 
amplitude modulation in communications. Using multiple generators, a larger set of signals 
can be described, such as multiband functions [8, 9, 10]. Sampling theories similar to the 
Shannon theorem can be developed for this signal class, which allows to sample and 
reconstruct such functions using a broad variety of filters. 

Recently, in order to improve the sampling speed, Papoulis’ theory is usually applied to 
oscilloscope and digitizer. We have extended the scope of Papoulis’ theory by introducing a 
formal distinction between the input space and the reconstruction space. The sampling can 
then be represented as the inner products of the input signal with a set of sampling vectors, 
which span the sampling space S. Examples include multi-resolution [11] spline 
decompositions [7]. And the reconstruction is obtained by forming linear combinations of a 
set of reconstruction vectors that span a space W. The reconstruction was obtained by first 
processing the samples by a digital correction filter [12, 13], then forming linear combinations 
of a set of reconstruction vectors that span a space W. In order to eliminate the digital 
correction filter, we study the sampling reconstruction in such a case that the samples come 
from a known shift-invariant space, and present a computing method of the reconstruction 
function from the oblique frame theory. The reconstruction was directly acquired by forming 
linear combinations of a set of reconstruction functions. Finally, the computational approach 
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is proved by reconstruction of a digitizer which samples the signal by derivative sampling or 
periodically non-uniform sampling. 

The paper is organized as follows. Sampling in shift-invariant spaces that we treat in the 
paper is introduced in Section 2. Section 3 presents the oblique frame theory. In Section 4 we 
propose a new computational approach to the reconstruction function using the oblique frame 
theory. Experiment results are demonstrated in Section 5. 

 
2. Sampling for a shift-invariant spaces 
 

In this paper, we consider more general shift-invariant spaces, generated by L functions 

{ } 0,1, , 1
( )i i L
tϕ
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The functions{ } 0,1, , 1
( )i i L
tϕ

= −L  are referred to as the generators of W. In the Fourier domain, 

we can represent any x(t) ∈W  as: 
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Our only restriction on the choice of the generating function sequence{ } 0,1, , 1
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Since x(t) lies in a space generated by L functions, it makes sense to sample it with m 

filters { } 0,1, , 1
( )i i L

s t
= −L , as it is on the left-hand side of  Fig. 1. The samples are given by: 
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Fig. 1. Sampling and reconstruction in shift-invariant spaces. 
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At the same time, the choice of the collection { } 0,1, , 1,
( )i k L n Z

s t nT = − ∈−
L  forms a frame for W. 

In other words, there must exist two constants A and B (0 )A B< ≤ < ∞ for every ( ) ,x t W∈  
such that:  
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If 0 A B< = < ∞ , the frame is said to be an exact frame. An exact frame is a Riesz basis. 
We define the sampling space:  
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Taking the Fourier transform of ( )id n  in Fig. 1, we have: 
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where: ( )kC ω  and ( )iD ω are the discrete-time Fourier transform of ( )kc n  and ( )id n ( )kψ ω  

and ( )iS ω  are the Fourier transform of ( )k tϕ and ( )is t− , respectively. 
This leads to a compact relation between the sampling data: 
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As illustrated in Fig. 1, the reconstruction was obtained by first processing the samples by 

a digital correction filter 1( ) ,H ω − then forming linear combinations of generated functions 

{ } 0,1, , 1
( )i i L
tϕ = −L shifted with period T. In order to eliminate the digital correction filter we 

propose that the reconstruction is directly acquired by forming linear combinations of a set of 

reconstruction functions{ } 0,1, , 1,
( ) .i i L n Z

g t nT = − ∈−
L The sampling system is schematically 

represented in Fig. 2. 
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Fig. 2. Improved sampling and reconstruction in shift-invariant spaces. 
 
3. Oblique frame theory 
 

Let us now simply introduce the oblique frame theory. A function sequence 
{ } 0,1, , 1,

( )i i L n Z
s t nT = − ∈−

L  is called an oblique frame of subspace W if  there are two constants A 

and B (0 )A B< ≤ < ∞ such that:  
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holds for any ( )x t W∈ . An exact frame is a Riesz basis. Obviously, a Riesz basis is also a 

frame. For any oblique frame  { } 0,1, , 1,
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holds for any ( )x t W∈ . Note the definition of an oblique frame operator is:  
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It is easy to see that the function sequence { }1
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4. Derivation of the reconstruction function 
 

The choice of the generating function sequence { } 0,1, , 1
( )i i L
tϕ = −L  is that W is a closed 

subspace of 2l  with as its Riesz basis if and only if [14]:   
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In order to obtain the reconstruction function, define ( , )kq nT t  as in (1): 
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From (10), it implies that { } 0,1, , 1,
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q nT t = − ∈L is a frame of W. For any 
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So the frame { } 0,1, , 1,
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= − ∈L  of the space W is called a reconstruction frame. In a 

real-world application, we need to know the expression of the reconstruction 
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Substituting (9) into the Fourier transform of ( , )iq nT t , ( , )iQ tω can be rewritten as:  
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From (15), the reconstruction frame ( )G ω  is derived by: 
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From (13), the generated functions{ }( )kg t follow that: 
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5. Experiment and analysis 

We now apply the computational approach to reconstruction from samples of a digitizer. 
The digitizer is schematically represented in Fig. 3. In the digitizer, two sampling methods are 
selected, one is derivative sampling and the other is periodically non-uniform sampling. So 
we utilize the computational approach of the reconstruction function for sampling in shift-
invariant spaces to derivative sampling and periodically non-uniform sampling. In section V-
A, we consider the derivative sampling, and in section V-B we provide the periodically non-
uniform sampling. 

 

( )x t ˆ( )x t
[ ]d n

 
 

Fig. 3. The structure of a digitizer . 

 
5.1. Derivative sampling 
 

We consider the case L=2. The corresponding analysis filters in the block diagram in the 
Fig. 1 are 0 ( ) ( )s t tδ− = and 1( ) ( ).s t tδ ′− = The generating functions 0( )tϕ and 1( )tϕ of 
reconstruction space W are given by: 
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where: T  is the sampling period. 
We easily derive the reconstruction functions by using the oblique frame theory. The 

reconstruction functions0( )g t  and 1( )g t  are expressed by: 
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We sample a continuous-time signal 6 6( ) sin(45 10 ) sin(120 10 )x t t t= × + ×  using the 

derivative sampling system with 82 /10T π= . Obviously, ( ) .x t W∈  The reconstruction signal 
is shown in Fig. 4. In Fig. 4, the sampling points in the first channel and second channel are 
marked by “∗ ” and “• ”. Fig. 4a shows the first channel reconstruction signal. The second 
channel reconstruction signal is described in Fig. 4b. The linear combination of two channel 
reconstruction signals is shown in Fig. 4c. The reconstruction algorithm is proven by 
comparing Fig. 4c and Fig. 4d, it is shown that the reconstruction algorithm is effective. 
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Fig. 4. Reconstruction signal from differential sampling.  
 
5.2. Periodically non-uniform sampling 
 

In this very structured form of periodically non-uniform sampling, the samples are 
acquired at two distinct locations 0 0,t∆ = 1 / 3t T∆ = within the basic sampling period T. The 

corresponding analysis filters are 0 ( ) ( )s t tδ− = and 1( ) ( ).s t t tδ− = − ∆ The generating functions 

0( )tϕ  and 1( )tϕ  of reconstruction space W are given by (18) and (19). 

From (16), the reconstruction functions0( )g t  and 1( )g t  are expressed by: 
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where 0 2 /Tω π= . 
Assuming an input signal 8 8( ) 2sin(5 10 / 6)cos( 10 /3)x t t tπ π= × × and the sampling period 

81/10 ,T = obviously ( ) .x t W∈ Fig. 5 shows the reconstruction signal; the sampling points in 
the first channel and second channel are marked by “∗ ” and “• ”, the dotted lines are the 
imaginary of reconstruction signals. By comparing Fig. 5c and Fig. 5d, the validity of the 
reconstruction algorithm will be proven too. 

 
 

2 2.05 2.1 -2 

-1 

0 

1 

2 

time(us) 
a. First channal signal 

A
mp
litu
de(
v) 

2 2.05 2.1 -2 

-1 

0 

1 

2 

time(us) 
b. second channal 
signal 

A
mp
litu
de(
v) 

2 2.05 2.1 
-2 

-1 

0 

1 

2 

time(us) 
c. reconstruction signal 

A
mp
litu
de(
v) 

2 2.05 2.1 
-2 

-1 

0 

1 

2 

time(us) 
d. original signal 

A
mp
litu
de(
v) 

    
 

Fig. 5. Reconstruction signal from periodically non-uniform sampling.  
 
6. Conclusion 
 

In this paper, we studied the problem of recovering a signal ( )x t  in shift-invariant spaces, 

from L given sets of samples which are modeled as inner products of ( )x t  with sampling 

functions ( ),is t−  0 1.i L≤ ≤ −  In the traditional method, the reconstruction was obtained by 
first processing the samples by a digital correction filter, then forming linear combinations of 
generated functions shifted with period T. In order to eliminate the digital correction filter, we 
derive a computational approach to the reconstruction function, which turns computing of 
reconstruction functions into solving a matrix equation by means of the oblique frame theory. 
It is ensured that the reconstruction functions can be effectively obtained. Thus the 
reconstruction was directly acquired by forming linear combinations of a set of reconstruction 
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functions. Finally, the method is verified through reconstruction of periodically non-uniform 
sampled or derivative sampled signals of a digitizer. 
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